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ABSTRACT
Pattee's semantic closure principle is used to study the characteristics and requirements of

evolving material symbols systems. By contrasting agents that reproduce via genetic variation with
agents that reproduce via self-inspection, we reach the conclusion that symbols are necessary to attain
open-ended evolution, but only if the phenotypes of agents are the result of a material, self-
organization process. This way, a study of the inter-dependencies of symbol and matter is presented.
This study is based first on a theoretical treatment of symbolic representations, and secondly on
simulations of simple agents with matter-symbol inter-dependencies.  

The agent-based simulations use evolutionary algorithms with indirectly encoded phenotypes. The
indirect encoding is based on Fuzzy Development programs, which are procedures for combining
fuzzy sets in such a way as to model self-organizing development processes.

Keywords: Howard Pattee, Evolutionary Systems, Evolutionary Algorithms, Artificial Life,
Biosemiotics, Genetic Algorithms, Fuzzy Set Theory, Agent-Based Simulation, Representation.

1. PATTEE AND SEMANTIC CLOSURE

Howard Pattee’s main contribution to science and philosophy has been his insistence on
complementary modes of description in models of the living organization. He has proposed that
models of biological systems based solely on physical law, do not explain the symbolic nature of
genetic descriptions. Conversely, models of the biological organization that are based solely on the
symbolic nature of genes, miss the material constraints observed by any physical system, which are
also fundamental to biology. The term semantic closure  (Pattee, 1982, 1995a) was used to convey
a principle of organization of living systems, which requires symbolic and material modes of
description, and is necessary to achieve open-ended evolution.

The skepticism and rejection that this principle often encounters in Theoretical Biology, Artificial
Life, and Complex Systems research lies both on the notions of material symbol systems (MSS) and
open-ended evolution (OEE). Many have doubts about what kind of physical processes constitute
a MSS used to manipulate representations or descriptions. Due to long standing debates in Cognitive



1 The three main abbreviations used throughout this article are MSS (Material Symbols Systems), OEE
(Open-Ended Evolution), DST (Dynamical Systems Theory), and FDP (Fuzzy Development Programs).
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Science, where physical symbol systems have come to be identified with a functionalist approach,
which deems irrelevant the materiality of a physical symbol system, many believe that the notions
of symbol and representation are unnecessarily murky – or even mystical and dualist. Indeed, since
we can study evolutionary processes with Dynamical Systems Theory (DST)1, why should we
confuse things with symbols and semiosis? Those that profess this point of view claim that we
should use DST exclusively as the explanatory tool for evolutionary systems, which in this sense
would be modeled only with physical law and self-organization as captured by DST (Beer, 1995;
Van Gelder and Port, 1995; Maturana and Varela, 1987; Goodwin, 1994).

In contrast, Pattee argues that only MSS are capable of OEE. Other material systems can evolve, but
not in an open-ended manner. But what constitutes a MSS, and what is OEE? Pattee uses the genetic
machinery of the cell as an example of the former, and evolution by natural selection as an example
of the latter. But our knowledge of molecular biology is still very incomplete to allow a theoretical
treatment of these individual topics. Therefore, in order to strengthen his argument, one needs first
to define the material  symbol systems which follow the semantic closure principle, and then discuss
evolutionary processes in order to identify those that are open-ended from those that are not.  In this
article I elaborate on these distinctions, and present experiments with simulated simple matter-
symbol systems to validate some of mine and Pattee’s assertions.

In particular, I will provide arguments and experimental evidence that even though material systems
cannot evolve in an open-ended manner without symbols, OEE is not a result of symbols alone, but
of the complex interplay between symbols and matter. Often Pattee’s semantic closure is seen as a
non-materialist organization principle, but as we shall see, quite the contrary is true. Notice also that
OEE here is not discussed by contrasting simulations with realizations of evolving systems as
Cariani (1992) and Pattee (1989) did. Rather, the contrast is between a fully dynamicist and a
complementary symbolic/dynamicist view of evolutionary systems. Furthermore, this contrast is
exemplified with both biological knowledge and computer simulations.

I will start by discussing evolving material agents and the possible types of reproduction such agents
need to pursue in order to evolve. By contrasting the evolutionary potential of different reproduction
strategies, I reach Pattee’s conclusion that only MSS are capable of attaining OEE. From here, I
present the arguments for the inclusion of semiotics in models of evolutionary systems and outline
a set of requirements for MSS. Finally, I describe simulations of evolutionary processes in
populations of agents with and without replication via MSS. These simulations offer a means to
study simple matter-symbol systems and their evolutionary potential empirically.
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2. EVOLVING MATTER

2.1 Material Self-Organization and its Simulation

To introduce symbols in the explanatory framework of biology, instead of starting from the
cognitive top, Pattee (1982), suggested that we start from the simplest symbol-matter systems at the
bottom of the biological organization. If we are to refer to some material systems as symbolic, we
need to start from the physical milieu to decide when some arrangement of material components
becomes symbolic.

We typically study the physical law of material systems with mathematical theories such as DST.
This dynamics approach leads to the notion of self-organization.  Self-organization is seen as the
process by which energetically open systems of many components tend to reach a particular state,
a set of cycling states, or a small volume of their state space (attractor basins), with no external
interference. This attractor behavior is often recognized at a different level of observation as the
spontaneous formation of well organized structures, patterns, or behaviors, from random initial
conditions (emergent behavior, order, etc).

Self-organization is studied computationally with discrete dynamical systems (state-determined
systems) such as boolean networks or cellular automata. The state-determined transition rules are
interpreted as the laws of some physical system (Langton, 1986; Rocha and Joslyn, 1998): the state
of each component depends on the states of its neighboring (or related) components in the previous
time instance. It follows from the observed attractor behavior (Wuensche and Lesser, 1992) that
there is a propensity for matter, whose physical law is modeled by the transitions rules of DST, to
self-organize (e.g. Kauffman, 1993). In this sense, matter is described by the (lower-level)  laws of
physics (which can be modeled computationally with DST) and the observed (emergent) attractor
behavior of self-organization.

Several characteristics of the emergent behavior of systems comprised of many interacting material
components have lead to them being named complex (Pattee, 1973). Typically, from the final
attractors, we cannot recover the initial configuration of states of the system’s components (its initial
conditions). In other words, the emergent organization of (complex) self-organizing systems is non-
linear or irreversible, as we cannot separate the individual contributions of its building blocks, even
though we may be able to distinguish the building blocks themselves. These characteristics of self-
organizing material systems are modeled in section 5.

Another important characteristic of self-organizing systems is that they are dynamically coupled to
their environment. In the language of physics, we can say that the system is dynamically coherent
with its environment. Dynamically, a self-organizing network of components and its environment
are in fact one system, a change of state in one produces a coordinated, state-determined chain of
events in the other – there is a definite temporal relation between events and components of the
system-environment coupling.  Indeed, the self-organizing behavior of agents defined by networks
of components that are dynamically coherent with their environments (situated agents) is as much
a result of the production rules of the agent’s components  as of the laws of the environment (Beer,
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1995; Clark, 1997; Rocha and Joslyn, 1998). Wheeler and Clark (1999) refer to this lack of
separation between dynamically coherent agents and their environments as causal spread. 

2.2 Evolving Agents

To evolve in a changing environment, self-organizing agents must be able to change their own
dynamics in order to produce new basins of attraction leading to new behaviors (or phenotypes):
variation. Furthermore, the most appropriate changes in a given environment need to be selected for
evolution to occur. Evolution, as we know it, is based on a process of selected self-organization
(Rocha, 1996, 1998), where self-organizing agents reproduce subjected to variation and those
variations which are most appropriate for the demands of their environment are selected, that is,
undergo an increase of their reproduction rates. Thus, self-organizing agents produce new behaviors
(evolve) by reproducing themselves with variation while subjected to environmental selection. But
for selection to occur the self-organizing agents must have some internal vehicle for producing and
reproducing different dynamic configurations — there must be different alternatives. 

Notice that DST (modeling physical law) does not allow for alternatives. “The only meaning we can
attach to a choice of alternatives in a system described by deterministic laws is through measurement
and control on initial conditions”. (Pattee, 1995a, page 15) In state-determined models, a choice can
only be modeled by the introduction of new or change of existing initial conditions (measurement
and control). That is, for evolving self-organizing agents to reproduce alternative dynamic
configurations (or phenotypes), they need a process of accessing the initial conditions that produce
those. When initial conditions are selected they re-enter the dynamics, self-organizing into the
respective dynamic configurations (with some variation). Therefore, models of evolution must
describe both the dynamics of matter and the processes used by evolving agents to access their own
initial conditions for reproduction, variation and selection of new phenotypes. This notion of
selected self-organization leads us to question what kinds of processes to access initial conditions
are possible?

3. REPRODUCTION STRATEGIES

Evolution by Natural Selection is based on increased rates of reproduction of  self-organizing agents
whose dynamical configurations in an environment are successful. As discussed in section 2,
selected dynamical configurations of agents need to be accessed as initial conditions for
reproduction. Thus, agents reproduce by transmitting initial conditions to offspring, that
subsequently re-produce the parents’ dynamical configurations by self-organizing their material
components according to the inherited initial conditions. Two distinct ways of accessing initial
conditions for this transmission can be thought of: via self-inspection or via symbolic description
(Von Neumann, 1966). Since biological organisms use the latter as genetic descriptions, let us first
examine this type of reproduction, and then think of how reproduction via self-inspection could
occur.
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3.1 Von Neumann’s Reproduction by Description and Construction: Genetic Reproduction

Von Neumann(1966) proposed a theory of self-replication as a systems-theoretic criteria for OEE
(details  in Rocha, 1996, 1998). It is based on the notions of universal construction and description,
and it models agents which evolve by (neo-Darwinian) natural selection via variation of their genetic
descriptions – though it was proposed before the DNA molecule was discovered. Von Neumann’s
descriptions entail a symbol system on which construction commands are cast. These symbolic
descriptions are localized on “inert” structures which can be used at any time — a sort of random
access memory. In other words, symbolic descriptions store initial conditions used to construct
evolving agents (modeled in his theory as cellular automata). Reproduction is achieved by
simultaneously constructing the dynamical machinery of offspring and, separately, passing the
“inert”  description (of initial conditions) used to re-construct parents.  An offspring’s dynamical
configuration is constructed from the initial conditions encoded in the parent’s description, while
its own description is copied from the parent’s so that it can itself reproduce in the future. This way,
the description takes an active role in constructing the offspring’s dynamical configuration, and a
passive role in being copied.

But what kind of material structures can be conceived of as “inert”, and used as descriptions for
reproducing, natural self-organizing agents? These must be material components with many
dynamically equivalent states which can be used to set up an arbitrary (symbolic) relation with
whatever material components that define initial conditions. The  genetic system (which Von
Neumann’s model conceptually describes) gives us this insight. The genotype of biological
organisms is a set of descriptions encoding initial conditions (amino-acid chains) for components
(proteins) which self-organize to produce some dynamical configuration (phenotype). As Von
Neumann conceptualized, biological reproduction is achieved by constructing the machinery of
offspring from genetic description, while also simultaneously passing (copying) the genetic
description itself.

Most any sequence of nucleotides is equally possible, and its informational value (genetic
information) is largely independent of the particular dynamic behavior of the DNA/RNA sequence.
Genetic information is not expressed in the dynamics of nucleotide sequences (RNA or DNA
molecules), but is instead mediated through an arbitrary coding relation that translates nucleotide
sequences into amino-acid sequences, whose dynamic characteristics ultimately express genetic
information in an environment. It is precisely the dynamic irrelevance of nucleotide sequences
(“inertness”) that makes DNA/RNA ideal candidates for stores of genetic information (descriptions)
given an arbitrary genetic code (Pattee, 1995a; Umerez, 1995). DNA qua carrier of genetic
information in biological organisms is virtually dynamically incoherent with the
organism/environment coupling, since the information needed to construct a given protein (the
description or representation) can be retrieved at any time as much as a book can be retrieved from
a library (Pollack, 1994). 

Dynamically incoherent descriptions, can be seen as symbolic representations of dynamic
configurations (as further elaborated in section 4), but what does dynamical incoherence mean?
Ultimately, all symbolic descriptions have a material, dynamic, substrate. The point is that in
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systems where these descriptions are used as symbols, their dynamics is irrelevant.  It is not their
dynamic characteristics that elicits responses from the dynamic components of the system. Rather,
it is their informational value, extracted via a coding relation (instantiated by the Ribosome, T-RNA
and other machinery in the cell), which is relevant for the functioning of organisms. Indeed, recent
organisms carry many of the same genes used by primordial organisms to produce the same proteins.
More and more transgenetic technology pervades our life, we can use bacteria to produce human
proteins such as insulin, or produce plague resistant tomatoes with proteins encoded in genes from
pigs. All these facts show that in their role of information carriers, the dynamical substrate of genes
(the DNA or RNA molecules) is largely irrelevant. Genes can be decoupled from a particular
dynamic agent, and introduced into another where they will be used for their symbolic function,
which is: the specification of initial conditions that produce particular cell dynamics, thus re-entering
the dynamics of their host cells.

Now, of course, being instantiated as material structures, symbolic descriptions cannot be
completely dynamically incoherent. Dynamical incoherence needs to be understood in the frame of
stable existence of the whole dynamic machinery that recognizes representations of initial
conditions. Genes can be read by the living cell’s machinery, as long as the cell exists as such. Very
much in the same way as a writing system is only useful as long as it is understood by an appropriate
reading framework. Therefore, dynamical incoherence is not an absolute concept, but rather a
relative one. For a given dynamics, with particular time scales, we can treat certain components as
incoherent, if their dynamics are irrelevant in these time scales. We can further treat them as
symbolic representations, if such dynamically incoherent components are used to specify sets of
initial conditions for dynamic configurations of self-organizing agents. Pattee refers to the stable
existence of such an evolving matter-symbol organization as semantic closure (Pattee, 1982, 1995a).

3.2 Self-Inspection Versus Symbolic Description: The issue of Development

An alternative way for self-organizing agents to reproduce could be by self-inspection of their
components. The process of accessing the necessary initial conditions for selection, would be via
some dynamic machinery that would reproduce directly the components of the agent. In biological
systems, a protein could replicate itself without descriptions, using  some  assembly system with
access to a pool of existing parts (amino-acids). Instead of the ribosome, we could have some other
molecular arrangement capable of directly reading a protein and producing a copy of it. This
assembly machine, would need to “unfold” proteins to read their internal portions and generate
copies from available amino acids (Pattee, 1995a). These unfolded copies would be the initial
conditions that would then self-organize into selectable dynamic configurations. In this case, we
would have the ability to construct proteins from other proteins, rather than from dynamically
incoherent, genetic representations of initial conditions. This would be a dynamically coherent



2 Similarly to the argument here pursued, Hoffmeyer (2000) refers to dynamically coherent processes used
to specify another dynamical system as analog codes, as opposed to dynamically incoherent digital codes such as the
genetic system. I prefer to reserve the term code for dynamically incoherent representation schemes, which can be
see as effectively symbolic as discussed in section 4.

3 Before developing his semantic closure principle, Pattee (1961) created models of structures capable of
reproduction via self-inspection. The observation of the limitations of such models influenced very much the
development of his semantic closure principle.
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system for constructing proteins leading to a more Lamarckian evolutionary process2. Alas, this is
not the way life is!

Clearly, as systems grow in complexity, self-inspection becomes more and more difficult. The self-
organization  of the building blocks of life (amino acids) from the amino acid strings (the initial
conditions) into folded proteins is only the first of many levels of self-organization of biological
form. Proteins are themselves building blocks of levels ranging from macro-molecules to entire
organisms and even communities of organisms. This hierarchy of levels of self-organization is
known as biological development (Salthe, 1993), which, being a self-organizing process, is a
complex, nonlinear, irreversible process (section 2.1). Therefore, it would be impossible to
reproduce these developed higher level structures with the hypothetical protein-copier. From such
complicated ensembles, we would not be able to obtain its initial conditions. If life were restricted
to a protein-copier reproduction scheme, then it would be restricted to forms whose initial conditions
were recoverable, that is, to simple ensembles of proteins which could be separated into constituent
proteins, unfolded, copied, and then refolded. Thus, the diversity of life forms would be
tremendously restricted3.

The hypothetical self-inspection protein-copier would function as a “two-in-one” reader and
constructor of dynamic configurations. But due to the complex nature of self-organization and
development, the set of agents that could be reproduced this way would be severely limited to those
with recoverable initial conditions. In contrast, Von Neumann’s model of self-reproduction,
decouples the reader and construction functions, using intermediate decoding machinery for
symbolic descriptions of initial conditions. With this separation, agents reproduce not by self-
inspection, but by constructing instructions encoded in descriptions. What is gained is the ability to
construct any dynamical configuration from a description of its initial conditions, whether or not the
initial conditions can be recoverable from self-organized products. This is what Von Neumann
named universal construction.

This more sophisticated form of reproduction, based on a symbolic encoding system, is implemented
in biological systems with great evolutionary success. Functional, dynamic structures do not need
to be deconstructed into initial conditions, they are simply constructed from dynamically inert
descriptions and available parts. With the genetic code, functional molecules can be simply folded
from inert messages. This method is by far more general since any functional molecule, as well as
the phenotypes in whose development process the molecule participates, can be produced from a
description, or a set of descriptions, not merely those whose initial conditions can recovered to be
reproduced by self-inspection from available parts. 



8

Reproduction by symbolic description can produce any complex phenotype, whereas reproduction
by self-inspection is restricted to deconstructable, simple, phenotypes. Furthermore, given Von
Neumann’s system, we know that via variation and selection, agents whose reproduction is by
symbolic description, can evolve to explore the space of all possible complex phenotypes. The
genetic symbol system, with its utilization of inert structures, opens up a whole new universe of
behaviors and functionality which is not available to reproduction by self-inspection. In this sense,
it can evolve phenotypes in an open-ended fashion: all describable (by the genetic code) proteins,
and ensembles of proteins, can be produced and evolved.

3.3 The Constraints of Material Symbol Systems 

Von Neumann clearly used the notion of description-based universal construction in a computer
science context, where all construction must at some level be completely described or programmed.
In his self-reproduction scheme a description encodes a complete blueprint of automata to be
constructed by the universal constructor automaton. This need for a complete specification of self-
reproducing automata is very far from the actual material machinery of genetic reproduction. So in
what sense do we use the term description when speaking of the encoding of initial conditions
(amino acid chains) in biological systems? Clearly, genes do not encode the complete specification
of proteins and the means to produce them. That is, genes do not encode information such as how
to fold a protein. All of this comes for free with the laws of matter and self-organization (Moreno
et al, 1994). A true universal constructor, in a physical sense, would need to encode everything down
to physical law. But as Pattee (1995a) argues, biological systems are  physical systems which
precisely gained control of the context-dependent rules of an environment, not of course the physical
laws. They encode only those material aspects that can be controlled via specification of initial
conditions.

When Von Neumann’s universal constructor reads a description to construct some automaton, a
semantic code is utilized to map (translate) instructions into computational actions to be performed.
When the copier copies a description, only its syntactic aspects are replicated (transcription). Now,
the language of this code presupposes a set of computational primitives for which the instructions
are said to “stand for”(the semantics). In other words, descriptions depend on the set of
computational primitives of the reading device (the constructor). If such a set of primitives is
complete in the Turing sense, then it establishes a computationally universal language: any
computable function can be described in the language. In contrast, in the material world, a
construction code such as the genetic code presupposes a set of material building blocks that follow
physical law. In this sense, material codes are not universal as they depend on material constituents
which cannot be changed without altering the significance of the descriptions. 

A material symbolic code is defined by a small, finite, number of symbols (e.g. codons in DNA),
which can encode a finite number of primitive parts (e.g. amino acids). There is a countable number
of functional structures which may be constructed with a given set of parts. From encoded messages,
which we call representations (e.g. genes), a potentially infinite number of products can be
constructed. This defines the representational capacity of a given MSS. The point is that, a particular
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which states that any physical symbol system (of sufficient size) will have the ability to exhibit intelligent behavior,
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MSS is tied to specific construction building blocks. The richer the parts, the smaller the required
descriptions, but also the smaller the number of constructable products. Michael Conrad (1990)
refers to this as a tradeoff between programmability and high evolutionary plasticity or efficient use
of computational resources. Von Neumann referred to this as “the parts problem”.  He  used simple
building blocks such as “and” and “or” gates to build the code of his self-reproducing automata,
which in turn required a 29 state cellular automata lattice and very complicated descriptions. Arbib
(1966, 1967) was able to simplify von Neumann’s model greatly by utilizing more complicated
logical building blocks, but losing some  generality.

A given set of parts such as amino acids, provides intrinsic dynamic richness which does not have
to be specified by the symbol system on which construction commands are cast,  making descriptions
much smaller and establishing higher evolutionary plasticity. The cost of this plasticity or efficient
ability to specify proteins, is that the genetic code is not universal in that it cannot specify anything
whatsoever, but only those things that can be constructed from amino acid chains. It establishes
nonetheless a MSS which can specify or describe any conceivable amino acid chain (with the amino
acids used by the available tRNA molecules). This ability to describe and construct all possible
initial condition arrangements of building blocks, means that the ability of a MSS to describe and
construct any dynamic configuration is open-ended.

We should think of descriptions not as complete representations capable of producing universal
specification, but rather as material representations that produce matter-specific dynamic
configurations, that is, encoded initial conditions or constraints for material, developing, self-
organizing systems. This is how Pattee sees descriptions in his semantic closure principle: the
symbolic controls that impose material constraints. This view treats descriptions not as programs
but as encoded initial conditions for self-organizing processes. As discussed in section 4, this inter-
dependence between symbols and material constraints is completely ignored by cognitivist theories
of physical symbol systems, but not by the biosemiotics framework or  Pattee’s semantic closure
principle. Furthermore, the reproduction of self-organizing agents based on symbolic descriptions
of initial conditions leads to an open-ended evolutionary process, as also discussed in section 4 and
simulated in section 5.

4. EVOLUTION WITH MATERIAL SYMBOL SYSTEMS

4.1 Physical Symbol Systems

When we talk of MSS, we naturally recall the physical symbol systems put forward by Newell and
Simon (1976)4. 

“A physical symbol system consists of a set of entities, called symbols,  which are physical patterns that
occur as components of another type of entity called an expression (or symbol structure). Thus, a symbol 
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structure is composed of a number of instances (or tokens) of symbols  related in some physical way (such as
one token being next to another).  At any instant of time the system will contain a collection of these  symbol
structures. Besides these structures, the system also contains  a collection of processes that operate on
expressions to produce other expressions: processes of creation, modification, reproduction and  destruction.
A physical symbol system is a machine that produces through  time an evolving collection of symbol
structures.” Newell and Simon (1976) 

This definition of physical symbol systems adds nothing to the problem of the origin of
representations and symbols nor to the empirical constraints of actual matter-symbol systems. In
fact, it merely states the obvious: every symbol system, as any other thing, must follow physical
laws. It does not specify the conditions in which matter may become symbolic, the constraints that
matter and symbol may impose and require from one another, nor the conditions in which a semiotic
model is necessary or preferable over or in addition to a physical one. Indeed, it does not even
distinguish symbol from matter. 

The Pattee/Von Neumann view of genetic information as descriptions of initial conditions, as
outlined in section 3, is more reasonable that the Physical Symbol Systems hypothesis, because the
symbolic and material aspects of evolving systems are clearly delineated and not blurred: symbolic
descriptions represent initial conditions for the components of self-organizing agents. Let us now
discuss in more detail this biosemiotics framework which is based on complementary informational
and material modes of explanation.

4.2 Biosemiotics

Semiotics concerns the study of signs/symbols in three basic dimensions: syntactics (rule-based
operations between signs within the sign system), semantics (relationship between signs and the
world external to the sign system),and pragmatics (evaluation of the sign system regarding the goals
of their users)(Morris, 1946). The importance of this triadic relationship of any sign system has been
shown relevant for biology and genetics (e.g. Waddington, 1972; Pattee, 1982, 1995a; Cariani,
1998). Typically the semiotics of the genetic system is construed as follows:  all processes taking
place before translation (from transcription to RNA editing) define the set of syntactic operations;
the relation between mRNA (signifier) and folded amino acid chains (signified), through the genetic
code, implements a semantic relation; and finally, the selective pressures on the obtained proteins
and their developed products as the pragmatic evaluation of the genetic sign system. More on the
semiotics of the genetic system in (Rocha, 1998).

Semiotics leads us to think of symbols not simply as abstract memory tokens, but as material tools
(Prem, 1998) used in the situated interaction between agents and their environments. The MSS used
by evolving agents to reproduce (section 3), require the existence of encoded initial conditions of
material building blocks that interact and self-organize with the laws of their environment. How a
semiotic code between symbols and building blocks can arise from a material system is still very
much a mystery both for biological and cognitive systems. In biology, interesting models of the
origin of biological matter-symbol codes have been proposed (e.g. Bedian, 1982) or more recently
(Nieselt-Struwe and Wills, 1997). In (Rocha and Hordijk, 2000)  the emergence of symbolic activity
in computer simulations of simple matter-symbol systems, and its relevance for Cognitive Science,
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is presented. Here I elaborate on the characteristics and requirements of MSS that lead to OEE. In
section 5 results from simulations of these characteristics are presented.

4.3 Why a Complementary Model?

When studying dynamically coherent agent-environment couplings it becomes  hard to argue against
the radical dynamicists claim that evolutionary systems, as situated agents, are best studied with
nonrepresentational explanatory devices. Are we indeed better off abandoning the notion of
representation and symbols altogether and adopting a purely dynamical view of the world, in which
agents are just another indistinguishable dynamical component of a network of many components
(Beer, 1995; Van Gelder and Port, 1995)?

The answer to the previous question depends on whether there are limitations to the current
dynamical systems framework (Mitchell, 1998). More specifically, whether the reduction of
evolving agents with semiotic codes to pure dynamical systems requiring nothing but a material or
physical mode of description, turns out to be insufficient to explain natural phenomena. Physical
law, which DST models, is not equipped to deal with concepts such as biological function,
adaptation, and selection, which are the foundations of semantics. A dynamical systems model
needs other tools to explain how a bird’s wing functions both as an airfoil and an engine at the same
time (Rosen, 1993), though it can clearly explain the possible dynamic configurations of the
components of the wing. DST also does not allow us to “understand how two adaptive systems with
very different dynamical portraits give rise to similar functional behavior, and understand the source
of errors made by an adaptive system and how its function will be affected by various sorts of
‘lesions’”. (Mitchell, 1998)

The problem is that biological function is not an intrinsic property of physical law, but a selective
property of populations of individuals evolving under natural selection. Natural selection can be
described as a statistical bias on the rates of reproduction of populations of individuals. But this is
as far as (statistical) dynamics can take us to describe this process. It can describe which components
see their reproduction rates increase in population dynamics trajectories, but it cannot describe the
adaptive strategies responsible for the increase. It cannot describe how a certain phenotypical
characteristic of an organism gives it an advantage in a particular environment. For this type of
context-dependent explanation we require, in addition to physical law, what Pattee (1995b) refers
to as rules. Rules are context-dependent constraints which affect the behavior and success of agents
in specific environments, and furthermore only make sense in these environments. For example, the
rule “a layer of fat gives individuals a selective advantage”, makes sense for certain animals in the
arctic circle, but certainly not for equatorial ones. Such contingent constraints, in the discourse of
Physics, exist as initial and boundary conditions.

In fact, what distinguishes biology from physics, is that biological organisms, subjected to natural
selection, gained control of precisely those aspects of the environment which can be molded and
which physical law does not describe. Obviously, living organisms obey physical law, but in
addition to systems that merely follow physical law, they have gained control of context-dependent
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rules. In this sense, DST, qua physical law, cannot explain precisely those aspects that set living
systems apart, and are therefore strictly biological. 

“The reason that laws cannot describe [biological] function, is because we specifically restrict physical laws
to describe only those properties of matter that are, by principles of invariance and symmetry, as independent
of observers and individual measurements as possible. This is necessary to achieve the characteristic
universality of laws. [...] In other words, only those universal and intrinsic aspects of matter that have no
significance for individuals are described by laws, while those context-dependent, selective aspects of matter
that have significance for individuals in a local environment are described by symbols. Of course, all symbols
require material vehicles that obey all the laws, but symbolic function requires another model. These are
complementary models, not dualism.” (Pattee, 1995a, pages 14-15)

Since we need the ability to describe context-dependent function in evolutionary discourse, we need
a complementary framework that includes both matter and semantics, such as biosemiotics.
Furthermore, biological organisms gained control of context-dependent rules by creating genetic
descriptions of initial conditions used to construct and self-organize their phenotype5. Phenotypical
development by self-organization is clearly a dynamically coherent process, which should therefore
be modeled exclusively with the laws of matter. But, as discussed in section 3, genetic descriptions
are dynamically incoherent with the self-organizing dynamics of evolving agents. To insist on a
exclusive dynamical description of these essential components for OEE, is to completely miss their
functional roles in the biological organization, which are informational and representational, not
dynamic. Let us now discuss these roles in detail.

4.4 The Roles of Representations in Material Symbol Systems

Symbols (e.g. codons in DNA) are the physical structures used to store representations (e.g.
genes).Now, the role of representations is typically seen as the ability to participate in processes in
lieu of actual components that they stand for. When features that are necessary are not present, they
may “be represented; that is, something else can stand in for them, with the power to guide behavior
in their stead. That which stands in for something else in this way is a representation; that which it
stands in for is its content; and its standing in for that content is representing it.” (Haugeland, 1991,
page 62) Haugeland further requires that only those “stand-ins” which participate in a
representational scheme are representations. Such a scheme requires that there exist several possible
representation-content pairings, defined by an arbitrary code, and that there is a systematic syntax
for producing, maintaining, and modifying representations.

The material representations of the genetic system (as well von Neumann’s Self-Reproducing
model), share some of these characteristics, but show a very important difference which becomes
apparent when we distinguish between what representations are used for and useful for. Genetic
descriptions are never used in a dynamical process in lieu of something else. Indeed, the necessity
of considering some components of the living organization as symbols rather than matter, lies in
their particular role of representations of initial conditions and not of dynamic players (section 3).
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Rather, via a code, symbols are used for constructing or specifying dynamic products. This is a
reading and construction process, which in biology is referred to as translation and is implemented
by the ribosome and tRNA molecules. Von Neumann referred to this role of genetic descriptions as
the active role. In a biosemiotics framework, this is the semantic dimension of material
representation: dynamically incoherent symbols are decoded to produce dynamic products. In this
role, representations are used to produce and guide (constrain) dynamics, as Haugeland requires, but
not by standing-in for anything, rather by being used to construct something.

Now, the material representations of the genetic system function in yet another role, Von Neumann’s
passive role of descriptions. In this role, descriptions are produced, manipulated, changed, and
copied, but without any reference or recourse to their content. Semiotically, this role refers to the
syntactic characteristics of material descriptions (Rocha, 2000): those operations which can be
performed on representations independently of their content. Biological examples of these
operations are the transcription of mRNA from DNA, RNA Editing processes (Rocha, 1995, 2000),
and mutation and sexual recombination – the essential variation to achieve OEE through natural
selection. In this role, representations also do not stand in for content and furthermore are not even
used to produce or guide dynamics or behavior, but to disseminate existing or produce new
representations. Because of this role, descriptions can be communicated and novelty created. This
is what representations are useful for.

4.5 The Usefulness of Material Representations leads to Open-Ended Evolution

Ultimately, the value of representations is found when their content is expressed in an environment.
The environmental ramifications of the encoded constructs, the phenotypes, are a result of their
success in an environment. Semiotically, this is the pragmatic dimension of representations: the
survival of the encoded dynamics. Nonetheless, OEE requires all the three dimensions of
biosemiotics. Pragmatics denotes only the ultimate success of a given dynamic organism. As
described above, semantics refers to the act of constructing a given dynamic configuration from the
representations of its initial conditions, and syntax to the ability to communicate and create (by
variation) new representations. 

The three semiotic dimensions of material representations allow us to understand the unique and
necessary role of symbols in the material living organization. Above we stressed that material
representations are used for construction. Notice how this alone does not grant them a unique status
in the living organization. Other arrangements could have been used for construction, such as the
hypothetical self-inspection protein copier of section 3. Because different ways of constructing
proteins are possible, the full-blown utility of MSS is a result of the passive role or representations,
or if you will, their syntactic dimension: communication and variation (Rocha, 2000). 

As seen in section 3, biological organisms are able to reproduce any conceivable phenotype built
from a set of building blocks (the twenty amino acids of the genetic code), because they construct
it from dynamically incoherent representations that are communicated (separately from the reading-
construction machinery) to offspring. Without this ability to communicate passive representations,
biological organisms would be restricted to simpler phenotypes: those with recoverable initial
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conditions (section 3.2). Furthermore, communication with variation, gives rise to construction of
new phenotypes that can evolve via pragmatic selection.

In biological organisms, variation is applied solely to the syntactic representations. In fact, many
different kinds of syntactic operations are observed in evolutionary systems, such as RNA Editing
(Rocha, 1995; 1998). Variation is essential for OEE, but it needs to be paired with an encoding
mechanism capable of expressing any conceivable phenotype. Clearly, a self-inspection system such
as the hypothetical protein copier could evolve (in a Lamarckian way) with a variation mechanism
applied to the proteins copied via self-inspection. But since the set of phenotypes achievable by self-
inspection is smaller than those achievable by encoded construction (due to complex development),
such variation would not lead to OEE. In section 5, a computational study is presented to better
illustrate the evolutionary process of agents built from self-organizing building blocks via these two
kinds of reproduction: MSS and self-inspection.

4.6 Requirements for Material Symbol Systems: Semiotic Closure

I have discussed the role of material representations in evolutionary systems, now I summarize these
ideas in three requirements for MSS capable of OEE. The three requirements for MSS, project
Pattee’s semantic closure principle onto a biosemiotics setting, where we can rename it semiotic
closure. 

Requirement1: Dynamically Incoherent Syntax for Communication and Variation

MSS demand inert physical structures (arrangements of dynamic components) which can  effectively
be seen as dynamically incoherent regarding the overall machinery in which they are utilized as
representations (section 3.1). The role of these physical structures is not defined by their dynamic
characteristics but rather by their informational value. Let us refer to these structures as symbols.
Symbols  must have the ability to be manipulated and combined into new symbols. The set of
possible symbol manipulations defines the syntax of the representations.  Syntax is required for
communication in reproduction and for variation, both essential for natural selection and OEE.
Examples of inert structures are DNA and RNA, of material symbols are codons, and of
representations are genes, or the pieces (phrases) of DNA that encode specific proteins.

Requirement 2: Semantics or Construction via Arbitrary Code

There needs to exist an arrangement of dynamic components to implement an arbitrary coding
relation between the symbols of requirement 1, and initial conditions specifying arrangements of
material building blocks which subsequently self-organize  to produce some dynamic behavior – this



6 To say “arbitrary code” is actually redundant, since arbitrariness is a condition for having a code to begin
with (Umerez, 1995). The point is that the content of the (symbolic) representations does not depend on their
physical characteristics. There is no known reason to disclaim the idea that the current genetic code could have been
set up differently, that is, with different RNA codon - amino acid relations defined by tRNA molecules (Crick, 1968;
Hoffmann, 1975).
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is the semantic code6. When we say that a symbolic description  represents initial conditions, we
mean that the (dynamically incoherent) first is used to construct the (dynamically coherent) second.

It is because of this code between symbols and initial conditions, that we need a complementary
explanatory model which allows both dynamical and symbolic aspects – as Pattee has argued (e.g.
Pattee, 1978). The dynamical dimension is used to explain the products of the encoding, while the
symbolic dimension is used to explain the encoded representations. The biosemiotics framework
offers such an explanatory device, leading us to think of the semantics implemented by a
construction code as a material affair, rather than an abstract, surrogate relationship between internal
and external elements. In this sense representations are conceptualized as something used to start
off, not stand in for dynamic processes. Representations are used to, literally, materialize dynamical
systems.

Requirement 3: The Complex Pragmatics of Development and Selection 

The encoded initial conditions, after construction via the code of requirement 2, self-organize at
different levels: the first products of the self-organization of building blocks specified by initial
conditions (e.g. amino-acid chains), become themselves building blocks (e.g. proteins) for other self-
organizing processes, and so on. After development of initial conditions, for evolution to occur, a
feedback selection mechanism must exist to favor the sets of symbols representing the sets of initial
conditions which produce successful dynamic behavior. This defines a selection criteria and the
pragmatics of the representations. Since the process of development is typically not reversible, it is
in most cases impossible to access the independent value, or pragmatic repercussions, of each
participating representation (e.g. genes). Rather, feedback is applied to the entire set of
representations a given agent possesses – agents as the unit of selection. In natural selection, this
feedback is instantiated by increasing rates of reproduction of the more successful agents.

5. A SIMULATION STUDY OF EVOLUTION WITH MATERIAL SYMBOL SYSTEMS

“We need simpler embodiments of natural matter-symbol systems with both empirical power and conceptual
generality.” (Pattee, 1982, page 327)

Howard Pattee pushed the study of matter-symbol systems from the cognitive to the biological and
physical realms. His thesis has been that the matter-mind problem is too complicated to be
approached initially at the cognitive level. By understanding the symbolic nature of genetics, he
proposed, we may eventually be able to gain empirical and conceptual insight into the nature of
more complicated mind-matter systems such as brains and culture. 
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Figure 1: Schematic of self-organizing agents that reproduce by self-inspection (left) and via descriptions of their
initial conditions (right).

However, his message has encountered some rejection or at least neglect even in the biological
sciences. One reason  for the lack of acceptance may be because it has been hard to distinguish
between MSS based on representations used for construction, from the traditional view, from
linguistics and cognitive science, of symbols, as “stand ins”. Furthermore, the distinction
between systems capable of OEE and those that evolve in more restricted ways is not obvious. In
the prior sections, I have attempted a theoretical treatment of these distinctions, by thinking of
MSS in terms of three biosemiotic requirements which can be used to bridge the notion of
representation in cognitive and biological models. Below, I illustrate these issues with
simulations of MSS. 

Pattee (1989) has also articulated the notion that simulations of living organisms are not realizations.
But simulations are capable of providing the kind of empirical power we need to study simpler
matter-symbol systems. Indeed, the simplest known realization of a matter-symbol system, the cell,
is still far too complicated to build the kind of empirical and conceptual generality he proposed. It
could well be that before a “Cell Psychology” (Pattee, 1982) can be studied, we need an “Artificial
Life Psychology”. In (Rocha, 1998, 2000), a study of the origin of symbols from dynamical
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Figure 2: Random fuzzy set A(x) of X with *X*=100.

processes in Cellular Automata was pursued, while in (Rocha and Hordijk, 2000) these same
systems were discussed as a means to study emergent representations in Cognitive Science. Here
I present simulations of evolutionary processes with different reproduction strategies, to illustrate
the advantages of MSS in evolutionary processes.

In the next subsections, the results of simulations of the evolution of agents is presented. The idea
is to contrast the evolutionary potential of two different kinds of agents: those that reproduce by self-
inspection and phenotypic variation, and those that reproduce by genetic description and genetic
variation. Both types of agents posses identical phenotypes, whose self-organization from material
building blocks is simulated. But whereas some agents reproduce their phenotypes directly by
copying their building blocks (subjected to random variation of these building blocks), others
reproduce by constructing from, and separately copying, descriptions of the initial conditions of
these building blocks (subjected to random variation of descriptions). Figure 1 depicts both types
of agents. The details of the agents, their environment, and the simulations performed follow.

5.1 A Generalized Artificial Environment and its Demands

The most general artificial environment for simulations of evolving agents we can conceive, is
defined by a set X of variables x. These variables refer to observables or attributes we wish to
include and study in a given simulation – e.g. temperature, humidity, etc. To achieve generality, we
want these values to take any possible numerical value. Thus, the state of an agent in the
environment at a particular time is represented by a mapping from X to the real line. Fuzzy sets
(Zadeh, 1965) are unconstrained mappings to the unit interval. A fuzzy set is able to capture the state
of any agent whose attributes are defined by numerical values, since any real interval can be mapped
to the unit interval. Given a universal set X containing all the variables  x of an environment, a fuzzy



18

Figure 3: Fuzzy set F(x) used to calculate fitness function.

set A, defined by the membership function A(x): X ÷ [0,1], represents a particular state of some
agent in environment X (see figure 2).

For the purposes of simulations of evolutionary processes, we need to identify those agent states
(defined by fuzzy sets) which are considered advantageous in the environment. Clearly, in the most
realistic simulations of evolutionary systems, the fitness states are not a priori (explicitly) defined,
but emergent (implicit) from the rates of reproduction of agents (e.g. Ackley and Littman, 1991;
Werner and Dyer, 1991; Hutchins and Hazlehurst, 1991). But since the purpose here is to study
simulations of reproduction strategies, not realistic agent-environment couplings, we can assume
a fixed, explicit set of environmental demands or fitness function – as it is typically done in
evolutionary machine learning and optimization (Goldberg, 1989). 

Thus, we can define the fitness of any agent A(x) in the generalized environment, as proportional
to the Hamming distance from a  particular desirable state, described by another fuzzy set F(x) of
X. For this particular study, F is defined by the fuzzy union (maximum operator) of 2 constant
and 3 exponential membership functions (see appendix A.1 for full details) as shown on figure 3.
This choice of membership function is fairly arbitrary; it was designed so that it contains
exponential functions with different spreads. Exponential functions were chosen because the
agents used in the simulations described below, have access only to piece-wise linear functions
to approximate F. We can think of this fuzzy set as the demands of the environment.

The fitness function of this environment is a fuzzy set function, fit (A), defined for all non empty
fuzzy sets A(x) of X. This function takes integer values between 5 and 100. The highest value is
achieved when the Hamming distance (see appendix A.2) between A(x) and  F(x), divided by the
cardinality of A(x), *A*, is smaller than 0.05. The lowest value is achieved when the Hamming
distance between A(x) and F(x) is greatest (*A*). Between these limits, the fitness of a fuzzy set A(x)
is:
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Figure 4: Development of an agent from an
initial arrangement of building blocks. The
building blocks are recoverable from the
developed agent, but not the exact initial
configuration.

5.2 Agents and Their Building Blocks: Fuzzy Development Programs

The agents we want to evolve in the environment of section 5.1 are defined by a particular fuzzy set
A(x) of X, for which we can calculate a fitness value using equation 1. We can regard such a fuzzy
set as the phenotype of a particular agent in environment X. Each agent produces its phenotype from
a set of available building blocks according to a development scheme. 

In sections 2, 3 and 4, it was emphasized that living
organisms are assembled from building blocks which then
self-organize to produce dynamic configurations. The
initial conditions of these building blocks are important
for this production of the dynamic compounds. That is, the
same building blocks in a different arrangement, self-
organize or develop into different dynamic outcomes.
Therefore, just by analyzing the dynamic outcomes, one
cannot in general recover the exact initial arrangement of
building blocks. The development scheme used by the
agents here described models this complex behavior, but
we consider only one level of development, which should
be regarded as modeling the overall process of biological
development. When the building blocks of these agents
are combined to produce a final outcome, they are not
modeling specifically the folding of amino acid chains
into proteins, but rather a general multi-level development
process of self-organization (see section 3.2), in which the
initial arrangements of building blocks (the initial
conditions) are not recoverable, even though the sets of
building blocks (the components) employed are. Figure 4
depicts an abstraction of this process. The details of the
simulation of agent development from initial

configurations of building blocks into a particular fuzzy set of X follow.

Consider an initial fuzzy set A0(x) = 0.5 for all x of X, it is the initial state of the phenotype of our
agent A(x) in X. Consider now a sequence of n fuzzy sets A1(x), A2(x), þ, An(x)  which is applied to
A0(x) with the sequence of n fuzzy operations u1, u2, þ, un, that is, A1 is applied to A0 with u1, A2 is
then applied with u2 to this result, and so forth. This sequence of n fuzzy sets Ai(x) and operations
ui is a program to develop the phenotype of agent A from state A0(x) to a final state A(x), a fuzzy
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Table I: The set of 16 Fuzzy Set Shapes used by FDP’s

Figure 5: Examples of fuzzy set shapes.
From left to right starting on top left, 3,
1, 7, 4, 2,and 8 of Table I.

development program (FDP) of length n (Rocha, 1995, 1997): A(x) = A0(x) u1 A1(x) u2 A2(x) þ un An(x).
Notice that if some of the operations ui are non-commutative, then the sequence of the FDP matters,
that is, the permutations of the order of application of the FDP yield different final states A(x).  The
building blocks of an FDP are the fuzzy sets and operations employed in the FDP sequence, which
now need to be specified. 

Consider a small set, F, of nF typical fuzzy set shapes (a few
are depicted in figure 5). In the simulations here described 16
fuzzy set shapes were employed (nF = 16), specified by the
following membership functions defined for all elements x of
a generic interval of X , [0, L], as detailed in table I.

Consider also a small set, O, of nO fuzzy set operations. These
operations range from commutative operations such as fuzzy
union (c) and intersection (1) to non-commutative operations
such as  and , where the bar denotes fuzzy setA B∩ A B∪
complement (1-x). 16 distinct operations were used (nO = 16):
u1 = c, u2 = 1, u3 = Avg, u4 = 1 - Avg, u5 = , u6 = ,A B∩ A B∪
u7 = , u8 = , u9 = , u10 = , u11 = A.B, u12 = 1 - A.B, u13 = ,A B∩ A B∪ A B∩ A B∪ ( )A A B∩ ⋅

u14 = , u15 = , and u16 = . All these operations are simple functions of( )A A B∪ ⋅ ( )B A B∩ ⋅ ( )B A B∪ ⋅

two generic fuzzy sets A and B. Operations 7, 8, 9,10, 13, 14, 15, and 16 are non-commutative, and
are responsible for sequence-dependent FDP’s.

Notice now that the fuzzy set shapes F of Table I are defined for a generic interval [0, L], and the
operations O are applicable to any two generic fuzzy sets. This means that a FDP can be applied
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Figure 6: Triangular fuzzy set shape applied to
sixth octant of X (p=6) and stretched 2 octants to
each side (s=2). Shown for two values of the repeat
parameter (r=1 and r=2)

to any universal set X, whatever its size. To understand how this is done, we need to describe a
few more parameters of FDP’s.

Consider a partition of X in an even number nX of
parts. If nX  = 8, X is divided in equal octants. In
addition to a specific shape Fi of F, each Ai(x) of an
FDP is associated with a specific part of
X: p = 1, þ nX. In other words, each shape Fi is applied
to part p of X with operation ui. One other parameter
is s = 1, þ nX/2, which represents the number of parts
of X that shape Fi should be stretched over. Figure 6
shows the universal set X divided in octants (nX  = 8),
and a triangular fuzzy shape, F3 (dotted line), being
applied to the sixth octant (p = 6) with a stretch of
two octants on each side of the sixth octant (s = 2). A
final parameter r = 1, þ nX/2 is defined which
represents the number of times shape Fi is going to be
repeated in the interval of X yielded by p and s. In
figure 6, the dark line represents r = 1, meaning that

the triangular shape is repeated once. When r is 2, the triangular shape is narrowed in half, and
repeated twice over the interval of X given by parts 4 to 8 (p=6, s=2), in figure 6 this is represented
by the gray line.

Given these parameters, the full specification of each fuzzy set/operation pair Ai/ui of a FDP is
given by the tuple (Fi, p, s, r, ui), where Fi is a fuzzy set shape from  F,  p, s, and r the integer
parameters described above, and ui an operation from O. This tuple is referred to as a building
block of an FDP.

FDP’s define a scheme to construct an agent of environment X (section 5.1), defined by as many
variables as desired, with a relatively small description. For details of the information requirements
of FDP’s see appendix A.3. The idea is that with a small Boolean description (a FDP), we can
construct a fuzzy set of X, which is a real-valued structure. The ability to approximate any fuzzy set
of X with a fuzzy set constructed via an FDP, is naturally dependent on the length (n) of the FDP’s
used and on the richness of its building blocks.  The fuzzy set shapes of F used in the present work
are all piece-wise linear, whereas the fitness function (equation 1) is built from exponential
membership functions. Therefore, the agents of the simulations, which use FDP’s to construct their
phenotypes, approximate the fitness function with access only to linear building blocks. Figure 7
depicts a fuzzy set produced by a randomly generated FDP against the exponential fitness fuzzy set.
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Figure 7:Random FDP of n=16 elements and nX=16, applied to a universal set X with 100 elements. Hamming
distance to fitness fuzzy set (dashed line) 32; fit=16.

FDP’s model the development of the phenotypes of agents from initial conditions: the sequence
of building blocks. In this sense, FDP’s  model a material self-organization process, which is
potentially irreversible due to the non-commutative operations employed in the FDP sequence.
Furthermore, the final phenotype is the global outcome of the local assembly of linear fuzzy
shapes applied to subsets of X. The FDP provides a scheme to integrate local contributions from
subsets of X whose elements are linearly related according to fuzzy shapes from  F. In this sense,
the variables x of phenotypes produced by FDP’s are not independent, but locally interdependent
or epistatic. This can be seen by comparing the phenotype obtained from a random FDP (figure
7) with the completely random phenotype (figure 2).  Though FDP’s are not the typical
constructs used to study self-organization, such as Cellular Automata, they model two important
characteristics of development: irreversible arrangement of components and epistasis of
phenotypic variables.

5.3 Evolution by Self-Inspection and Phenotypic Variation

In this section we study the evolution of agents via direct reproduction (self-inspection) variation
of their phenotypes. The idea is to study the evolutionary characteristics of agents that do not
possess MSS to construct their phenotypes. To evolve, these agents also need to reproduce, be
subjected to some kind of variation, and be selected according to the demands of an environment.
Because these agents possess only phenotypes, they reproduce by self-inspection, in analogy to the
“protein-world” discussed in section 3.2. Thus, when an FDP agent reproduces, the set of building
blocks that produced its phenotype is accessible, but not the actual initial FDP sequence in which
building blocks were arranged  when the phenotype was produced. Therefore, reproduction in effect
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Figure 8: Direct reproduction of a self-organizing agent, leading to a rearrangement of initial conditions and
subsequently to a different agent.

copies the set of building blocks, but rearranges them randomly into another FDP sequence which
is then used to construct the phenotype of the offspring (figure 8). 

For example, an agent whose phenotype fuzzy set was constructed with the following FDP with
n=4 building blocks (applied to a universal set X with nX=16 partitions):

 (F12, 3, 2, 4, u3) – (F5, 13, 1, 5, u9) – (F1, 6, 3, 1, u11) – (F15, 7, 8, 2, u4)

may reproduce an offspring whose phenotype is constructed with the following rearranged FDP:

 (F15, 7, 8, 2, u4) – (F12, 3, 2, 4, u3) –(F5, 13, 1, 5, u9) – (F1, 6, 3, 1, u11)

The phenotype, and resulting fitness, of the offspring maybe be quite different depending on whether
the participating operations are commutative or not. Note that a compact way of representing these
FDPs is as a string of hexadecimal characters where 0 denotes an index value of 1, and F an index



7 The software developed to implement all the evolutionary algorithms here described, the generation of
FDP’s, as well as data for runs with other parameters are available online at http://www.c3.lanl.gov/~rocha/FDP.

8 For an overview of different types of  evolutionary algorithms, including variations of the elite scheme,
please refer to (Mitchell, 1996).
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Figure 9: Best agent fitness per generation, for a run of the elite algorithm during 1000 generations with pnoise = 0.2.
The phenotype produced with FDP1 is generated in generation 544, but it is lost in subsequent generations.

value of 16. These two FDP’s above can be represented respectively as B2132-4C048-0520A-E6713 and
E6713-B2132-4C048-0520A. The hexadecimal notation is used form here on to describe evolved FDP’s.

An evolutionary algorithm was performed on populations of agents generated with random FDP’s
(such as the one depicted in figure 7). Many different populations of agents were produced (with
very similar results); here I describe the results of populations of 100 agents with FDP’s of length
n=16, *X*=100, and nX=167. An elite evolutionary algorithm was employed8: 

1. A random population of 100 agents is generated.
2. The agents in the population are evaluated regarding the fitness function (eq. 1).
3. The 20 best agents (the elite) are automatically selected for a new population.
4. The remaining 80 agents of the new population are generated from variation of the elite

agents.
5. The new population undergoes the same process starting at 2, until a desired number of

generations or a fitness value is reached.

Notice that in the case of FDP agents, the selection of agents into the elite does not exactly
reproduce the FDP sequence. As described in the example above, the sequence of the FDP that
produced a phenotype is lost, only its building blocks are recoverable. Therefore, the agents selected
into the elite contain permutations of the FDP’s of the agents with highest fitness in the original
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Figure 10: FDP1 (a), fit = 100, and one of its permutations (b), fit = 62.

population. 

The variation applied to FDP agents in step 4 is a kind of phenotypic crossover and mutation. Two
agents of the elite are randomly selected (with repetition) as parents, m < n blocks of the FDP of one
parent and n-m blocks of the FDP of the other parent are randomly chosen (without repetition) to
produce the FDP of an offspring agent. A second offspring agent is produced with the remaining
blocks from each parent. Thus, two parents produce two offspring by randomly combining the
parents’ FDP’s. For instance, the two examples above may produce the following offspring:

(F1, 6, 3, 1, u11) –  (F12, 3, 2, 4, u3) – (F12, 3, 2, 4, u3) – (F15, 7, 8, 2, u4)

(F5, 13, 1, 5, u9) – (F1, 6, 3, 1, u11) – (F5, 13, 1, 5, u9) – (F15, 7, 8, 2, u4)

In addition to this phenotypic combination of building blocks, noise is applied to the building blocks
of the FDP’s of the offspring with probability pnoise. Noise means that (only) one of the parameters
is changed in a block with this probability, e.g. (F12, 3, 2, 4, u3) 6 (F12, 16, 2, 4, u3).
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Unlike what happens with genetic algorithms, described in the next section, the evolution of FDP
agents necessarily leads to greater variability, as the agents selected into the elite may not preserve
the FDP’s that produced phenotypes with high fitness. Often, a very fit agent is generated in one
generation, but because of the self-inspection (direct) reproduction, its offspring’s FDP may be
different form the original and furthermore produce a worse phenotype in the subsequent
generations, thus dropping out of the elite and the evolving population. A plot of such an
evolutionary process is shown in figure 9. An agent with maximum fitness, constructed with FDP1,
is produced on generation 544, but lost afterwards. If we analyze the FDP, we see that most
operations used are non-commutative (denoted by bold italics): FDP1 = AB047 - 5503D - 47702 - 8B047
- E5027 - 87102 - 2B047 - AB037 - 49602 - 65027 - 55027 - 65027 - 09100 - AB027 - CB047 - 09100. Figure 10
shows a plot of FDP1 and one of its lower fitness permutations (first 3 blocks appended to the end).

Now, from an optimization perspective, the fact that these agents are lost in subsequent generations
is irrelevant since we can store the best solution from every generation. Indeed, this algorithm
produced on average agents with higher fitness than those produced with the genetic algorithm of
the next section. The average fitness of 50 runs of 1000 generations with pnoise = 0.05, is 78.7,
whereas for the genetic algorithm is 71.5.  Several agents with maximum fitness, such as FDP1, were
evolved in these runs, but were all lost in the subsequent generations. The fact that the evolutionary
algorithm of FDP agents is able to produce good  solutions, indeed, on average better than a genetic
algorithm, is important for machine learning (Rocha, 1997). But here we want to contrast such a
non-genetic, Lamarckian, evolutionary process via phenotypic self-inspection, with an evolutionary
processes based on genetic or symbolic representations to appreciate the distinctions discussed in
prior sections.

5.4 Agents with Genotypes: Indirect Encoding and Reproduction via Descriptions

The FDP’s that produce the phenotypes of the agents used in the evolutionary algorithm of section
5.3 can also be encoded in symbolic descriptions. That is, we can endow them with a genotype:
basically a binary string  (of length < defined in appendix A.3) encoding each FDP. This second kind
of agents possess a genotype that encodes an FDP, which then develops into a phenotype defined
by a fuzzy set of X (as depicted in figure 1). In this sense, binary genotypes indirectly encode real-
valued phenotypes. We can now use the same elite evolutionary algorithm of section 5.3, but with
genetic transmission of descriptions from one generation to the next, and the traditional variation
operations of genetic algorithms (GA): crossover and mutation of genetic bit strings (Goldberg,
1989). Crossover of two parents is based on the choice of a point in the middle of the genetic binary
strings, with subsequent production of two offspring from the combination of the parents’ binary
strings to the left and right of this crossover point. Mutation is implemented by flipping the binary
state of each bit in the binary string with probability pmut.
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Figure 11: GA of FDP agents, with a population of 100 agents for 1000 generations, and pmut = 0.01. Best FDP
reached at generation 620.

Like biological organisms, this second kind of agents reproduces by communicating to offspring
descriptions of the initial conditions for developmental processes – the Von Neumann scheme
instead of self-inspection (as the agents of section5.3). The MSS is modeled by the encoding from
the binary strings of the genotype, to an FDP sequence of building blocks (the initial conditions).
While the development from the fuzzy set building blocks is modeled by the (irreversible) FDP
phenotype (Fuzzy Set) construction  process. Genotypes can encode any conceivable FDP, and
furthermore, they can reproduce its exact sequence to their offspring, thus always achieving the
same phenotype (plus variation). In this sense, genotypes are inert structures that encode initial
conditions for developing phenotypes, not phenotypes themselves. The advantage of using

descriptions is the ability to  bypass the irreversibility of developed phenotypes. Such irreversibility
of development, as we saw in the case of the self-inspection agents of section 5.3, leads to the
reproduction of offspring phenotypes distinct from parents and corresponding loss of very fit agents
in the evolutionary process. In the next section, we evolve FDP agents  that reproduce using
descriptions, to demonstrate the bypass of the irreversibility of development, thus achieving more
stable evolutionary processes capable of sustaining previous fitness gains.

5.5. Evolution by Genetic Variation

A typical run of the GA for FDP agents is shown in figure 11. As expected, the variability of the
pure FDP agents disappears when we include genetic descriptions. Those agents that make it into
the elite, are guaranteed the same FDP as their parents and therefore the same fitness. Notice, as
mentioned in section 5.3, that the average fitness of the best agents obtained in the GA runs is
actually lower than those obtained by the  phenotypic variation algorithm of section 5.3. The best
results were obtained with pmut = 0.01; the average fitness of the best agent in each run for a batch
of 50 runs of 1000 generations was 71.5 (against 78.7 for the agents of section 5.3). 



9 Other values were tested, but these values of mutation and noise yielded the best results when the two
types of agents were evolved independently as described above.
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Figure 12: First 20 generations of a run of a populations of 100 agents, 50 with genotypes and 50 without. The
lower line depicts the fitness evolution. The upper (lighter) line depicts the ratio of agents with genotypes in the
population: starting at 50%, dipping to a low of 20%, but taking over the entire population at generation 8. pmut =
0.01 and pnoise = 0.5.

This difference might not be significant, but it shows that both algorithms are capable of reaching
the same fitness levels, the issue is that the agents evolved by genetic variation, are better capable
of transmitting their phenotypes to offspring than those produced by phenotypic variation. To
appreciate better this distinction, the two types of agents were evolved in the same population of 100

agents; 50 of each kind. 50 runs of 1000 generations were performed for pmut=0.01 and pnoise=0.59.
In this algorithm, whenever  agents of the two different types meet as parents to produce offspring,
they simply reproduce themselves with mutation or noise (no crossover). When a pair of the same
type is combined, the reproduction is as described in 5.3 and 5.4. 

In every single run, the agents with genotypes took over the entire population, in an average of 4.3
generations. Figure 12 shows this drive towards a population of only agents with genotypes in one
of these runs. In the elite algorithm, as soon as the elite contains agents of one type, the whole
population is filled with this same type. 10 runs were tried with populations of 500 agents, but the
average number of generations before the population became filled with agents with genotypes only
slightly increased to 4.9. One of the best FDP’s, with fit=100, was found in one of these runs with
both types of agents, FDP2: 3C63A-FC525-96773-5E720-30308-BF702-D605F-42408-73502-8730E-97218-
C5612-3C50C-49063-4B125-9C309. Figure 13 depicts the phenotype constructed with this FDP.
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Figure 13: Phenotype constructed with FDP2

5.6 Variation and Selection in the Evolutionary Process

One thing we need to consider regarding these simulations, is if they are a result of the elite
algorithm employed. Evolutionary algorithms, particularly the elite algorithm, are very idealized
models of natural evolutionary processes, which do not include all of the real influences that occur
in biological evolution. Clearly, the selection mechanism used in these simulations is very
unrealistic. First, a fixed fitness function (eq. 1) is used to simplify the simulations. Second, the
selection of the best agents in each generation into an elite subset establishes an all-or-nothing
selection mechanism: only those that make it into the elite reproduce. Natural selection, on the other
hand, is understood as a bias on the rates of reproduction of agents. Other evolutionary algorithms
simulate this stochastic bias process more accurately. Instead of selecting an elite group of agents,
the new population is constructed from a probabilistic roulette wheel which biases the selection of
parents towards the agents with highest fitness (Goldberg, 1989). Furthermore, whereas in the elite
algorithm the elite agents are not varied with crossover, mutation, or noise (only the remaining
agents of the population built from them are), in this probabilistic algorithm, crossover occurs with
a probability pcross for every set of two parents reproducing. With high values of this probability, all
agents tend to be changed in the subsequent generation, thus potentially losing some of the
advantage of keeping the best agents around.

100 runs of this probabilistic evolutionary algorithm, with different values of pcross and the same
values of pmut and pnoise used for the elite algorithm, were performed on populations of 100 agents,
filled half and half with the two types of agents. The average fitness for the best agent at the end of
1000 generations in all these runs was 50.6, much lower than the 71.5 observed with the elite
algorithm. Indeed, the fitness of the best agent discovered in all of these runs was only fit=64.
However, the same behavior was observed when it came to the populations being taken over by
agents with genotypes. For values of pcross < 0.7, all populations became entirely populated with



10Notice that the way the crossover operation is implemented in these evolutionary algorithms, as a
mechanism for variation of successful solutions (Holland, 1995), is clearly  not a realistic model of sexual
reproduction. Crossover should be seen merely as an abstract mechanism for variation of genetic descriptions.
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Figure 14: Example of run where population becomes filled with agents without genotype. The upper (lighter) line
represents the ratio of agents with genotypes (it reaches 0 at generation 84). pcross = 1.0, pmut  = 0.05, pnoise = 0.05.

agents with genotypes, in an average of 33.3 generations, much higher a value than the 4.3 observed
with the elite algorithm. For values of pcross $ 0.7, about 90% of the  populations became entirely
populated with agents with genotype, but in about 10% of the runs, the population became entirely
populated with agents without genotype (figure 14).

Clearly, as the value of pcross increases, all agents in the population tend to be crossed over when
offspring are generated, which often results in the best agents in the previous generations being lost.
In other words, as pcross increases, the advantage of the agents with genotypes is reduced as
reproduction does not guarantee the same phenotype in the subsequent generation10. Without some
stability of the genetic representations used by agents, via an elite scheme or a lower crossover
value, the advantage of agents evolved by variation and selection of symbolically encoded initial
conditions for phenotypes dissipates. Indeed, if representations are not stable enough, we loose the
necessary inertness of genetic descriptions of requirement 1 (section 4.3). But as long as this
inertness is guaranteed, with a healthy amount of variation, agents with descriptions will take over
the entire population. Therefore, these simulations show that in addition to the presence of
irreversibility in a developmental process, description-based reproduction is advantageous only in
the presence of some stability of descriptions as these are passed to offspring in the evolutionary
process.

6. MATERIAL SYMBOL SYSTEMS

In this article I first presented arguments for why evolutionary systems use and benefit from using
a MSS to encode initial conditions for arrangements of material building blocks that self-organize



31

into phenotypes. The advantage put forward, based on the work of Von Neumann and Howard
Pattee, is the ability to produce and reproduce any possible complex  arrangement of the set of
available building blocks (OEE), and not merely those simple ones that can be reproduced by self-
inspection. 

To illustrate this, I presented a simulation where two different kinds of agents, with and without
symbolic descriptions, evolve; the first via phenotypic variation or (Lamarkian) self-inspection, and
the second via genetic variation. Self-organizing processes were simulated with Fuzzy Development
Problems, which implement a degree of irreversibility of developed phenotypes, based on a
sequence of sometimes non-commutative operations. The agents without symbolic descriptions
(genotypes), often reproduce different phenotypes than themselves because the original initial
conditions that produced them are not entirely recoverable.

In contrast, the agents with genotypes can reproduce other agents exactly as themselves because they
do not reproduce their phenotypes, but rather the genotypes containing the initial conditions that
produce phenotypes. The simulations showed that even though the agents without genotypes are
quite capable of producing very good solutions (on average better than the genotype ones), they
cannot maintain them in the population as easily. Therefore, agents with genotypes eventually take
over the entire population of agents. This shows how genetic descriptions offer both stabilizing and
variation requirements for evolution. Stability because agents can reproduce the initial conditions
to produce other agents such as themselves, and variation necessary to produce improvements.
Without inert symbolic descriptions, the non-linear phenotypes of agents can evolve through
variation, but do not as easily preserve the fittest agents. Finally, variation of descriptions needs to
be low enough to guarantee some minimum stability of the fittest agents (section 5.6) – the inertness
requirement.

Furthermore, notice that the agents endowed with genetic representations do not encode directly
their phenotypes. To model MSS, these agents indirectly encode phenotypes by constructing them
from encoded initial conditions and available building blocks. This indirect encoding models the
material constraints of material symbol systems in the development of phenotypes via self-
organization. Unlike traditional genetic algorithms, and the most radical theories of neo-Darwinian
evolution, genetic descriptions do not directly represent particular traits of phenotypes. Rather, the
final phenotypes are a result of non-linear self-organization, which is irreversible and produces
epistatic dependencies on phenotypic traits. The agents of the simulations here presented, whose
genotypes encode FDP’s, possess these traits. The phenotypes produced are irreversible due to non-
commutative operations, and the phenotype traits (the x variables) are epistatic, since they depend
on multiple genotype locations.

This way, the present work shows that Pattee’s arguments for the necessity of symbolic descriptions,
for evolving agents to attain OEE, is valid only if their phenotypes are self-organized from material
building blocks in a non-linear, irreversible, development process. Without this non-linear
development stage, the advantage of symbolic descriptions would disappear, since agents that
reproduce by self-inspection would have the same evolutionary potential, based on reproduction and
variation of reconstructable, non-epistatic phenotypes. The advantage of symbols, thus, exists only



11Notice however that this material involvement is dynamically incoherent (non-reactive). As discussed in
section 3, the components we regard as symbols do not participate dynamically (chemically) in the self-organization
process of the encoded building blocks. Rather, they participate as information carriers which are effectively read to
construct initial conditions for self-organization.
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when they are involved in a material coding relation with self-organizing building blocks: the
symbol/matter interplay of the semiotic closure principle (section 4)11. Hence, I offer the arguments
of the present article, to stress that Pattee’s drive to include semiotics in models of evolutionary
systems, is not at all a dualist, but rather, a complementary materialist and semiotic position, which
can furthermore be modeled computationally: there is no open-ended evolution without symbols,
but conversely there is no need for symbols without material self-organization. 

As Howard suggested from the study of simple matter-symbol interdependencies, such as the
simulations here described, we are lead to re-think symbols themselves, as we reach the conclusion
that representations are not substitutes standing for, but rather constructors of, material, evolving
systems.
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APPENDIX A: 

A.1 Construction of Fuzzy Set used by Fitness Function

Let f(x) be defined by the following exponential function applied to an interval [xi , xf] of X, of length
L = xf !xi:

where xc is the interval’s midpoint: xc = xi + L/2. " is a parameter that controls the spread of the
exponential function. In this case, we want the function to be very close to zero (, = 0.005)at the
interval limits, so we define " as ln(0.005)/(L/2)

To construct the fuzzy set F used to calculate the fitness function, for a given universal set X, we
construct 3 fuzzy sets using the exponential membership function f, applied to the intervals [1/4X,
5/12X], [5/12X, 11/12X], and  [1/3X, 2/3X]: F1, F2, and F3 respectively. F3 is further multiplied by
the constant ½ so that it’s peak is 0.5 rather than 1.0.

Two extra fuzzy sets are produced, F4 and F5, defined by step membership functions:

The union of two fuzzy sets is defined as the maximum operator on their membership function
values. The set F is finally obtained by: F(x) = F1 (x) c F2 (x) c F3 (x) c F4 (x) cF5 (x) (see figure
3).

A.2 Hamming Distance of Fuzzy Sets



35

( )Hamm A x A x A x A x
x X

1 2 1 2( ), ( ) ( ) ( )= −
∈
∑

ν = + + 





+








n n n

n
nF X

X
Olog log log log2 2 2 22

2

The Hamming distance between two fuzzy sets A1(x) and A2(x) is given by (Klir and Yuan, 1993):

A.3 Informational Requirements of Fuzzy Development Programs

Notice that the information required to specify an FDP, given  F and O, does not depend on the size
of X but on the  parameters nX, nF, and nO, since we only need to identify the interval (p) of X where
Fi is going to be stretched (s), repeated (r), and applied with operation ui. We need only log2 nF and
log2 nO  bits of information to identify nF  fuzzy set shapes and nO  operations from  F and O
respectively. We further need log2 nX bits to describe the position  p, and 2×log2 (nX/2) bits to
describe the stretch  s and repetition r. Therefore, log2 nF + log2 nX + 2×log2 (nX/2) + log2 nO bits are
required to define each building block. In summary, a FDP requires the following bits of information
to be described for any X:

In the simulations here described, there are 16 possible fuzzy set shapes and 16 possible fuzzy logic
operations, and X was divided in 16 parts. Thus, each building block in the FDP requires log2 16 +
log2 16 + 2*log2 8 + log2 16 = 4 + 4 + 6 + 4 = 18 bits to be described. For FDP’s of length  n = 8
(16), 144 (288) bits are required. Notice that this value is independent of the cardinality of X. 

FDP’s define a scheme to construct an agent of environment X (section 5.1), defined by as many
variables as desired, with a relatively small description. For the FDP’s just detailed, if the cardinality
of X is 100, we may be able to describe any agent with only 144 bits of information. Furthermore,
notice that the variables x of X are defined by membership values on the unit interval, while the FDP
description is binary (144 bits). In computational terms, real-type values usually require  4 to 10
bytes (32 to 80 bits) each. The computational description of a small number of elements of a fuzzy
set easily surpasses the binary description of a FDP by several orders of magnitude. For example,
100 real type variables require 3200 to 8000 bits of information.
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